skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moon, Minkyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT BackgroundClimate‐change‐induced shifts in the timing of leaf emergence during spring have been widely documented and have important ecological consequences. However, mechanistic knowledge regarding what controls the timing of spring leaf emergence is incomplete. Field‐based studies under natural conditions suggest that climate‐warming‐induced decreases in cold temperature accumulation (chilling) have expanded the dormancy duration or reduced the sensitivity of plants to warming temperatures (thermal forcing) during spring, thereby slowing the rate at which the timing of leaf emergence is shifting earlier in response to ongoing climate change. However, recent studies have argued that the apparent reductions in temperature sensitivity may arise from artefacts in the way that temperature sensitivity is calculated, while other studies based on statistical and mechanistic models specifically designed to quantify the role of chilling have shown conflicting results. MethodsWe analysed four commonly used combinations of phenology and temperature datasets obtained from remote sensing and ground observations to elucidate whether current model‐based approaches robustly quantify how chilling, in concert with thermal forcing, controls the timing of leaf emergence during spring under current climate conditions. ResultsWe show that widely used modeling approaches that are calibrated using field‐based observations misspecify the role of chilling under current climate conditions as a result of statistical artefacts inherent to the way that chilling is parameterised. Our results highlight the limitations of existing modelling approaches and observational data in quantifying how chilling affects the timing of spring leaf emergence and suggest that decreasing chilling arising from climate warming may not constrain near‐future shifts towards earlier leaf emergence in extra‐tropical ecosystems worldwide. 
    more » « less
  2. Abstract Vegetation phenology is a key control on water, energy, and carbon fluxes in terrestrial ecosystems. Because vegetation canopies are heterogeneous, spatially explicit information related to seasonality in vegetation activity provides valuable information for studies that use eddy covariance measurements to study ecosystem function and land-atmosphere interactions. Here we present a land surface phenology (LSP) dataset derived at 3 m spatial resolution from PlanetScope imagery across a range of plant functional types and climates in North America. The dataset provides spatially explicit information related to the timing of phenophase changes such as the start, peak, and end of vegetation activity, along with vegetation index metrics and associated quality assurance flags for the growing seasons of 2017–2021 for 10 × 10 km windows centred over 104 eddy covariance towers at AmeriFlux and National Ecological Observatory Network (NEON) sites. These LSP data can be used to analyse processes controlling the seasonality of ecosystem-scale carbon, water, and energy fluxes, to evaluate predictions from land surface models, and to assess satellite-based LSP products. 
    more » « less
  3. Abstract Evapotranspiration (ET) is a significant ecosystem flux, governing the partitioning of energy at the land surface. Understanding the seasonal pattern and magnitude ofETis critical for anticipating a range of ecosystem impacts, including drought, heat‐wave events, and plant mortality. In this study, we identified the relative controls of seasonal variability inET, and how these controls vary among ecosystems. We used overlapping AmeriFlux and PhenoCam time series at a daily timestep from 20 sites to explore these linkages (# site‐years >100), and our study area covered a broad climatological aridity gradient in the U.S. and Canada. We focused on disentangling the most important controls of bulk surface conductance (Gs) and evaporative fraction (EF = LE/[H + LE]), whereLEandHrepresent latent and sensible heat fluxes, respectively. Specifically, we investigated how vegetation phenology varied in importance relative to meteorological variables (vapor pressure deficit and antecedent precipitation) as a driver ofGsandEFusing path analysis, a framework for quantifying and comparing the causal linkages among multiple response and explanatory variables. Our results revealed that the drivers ofGsandEFseasonality varied significantly between energy‐ and water‐limited ecosystems. Specifically, precipitation had a much higher effect in water‐limited ecosystems, while seasonal patterns in canopy greenness emerged as a stronger control in energy‐limited ecosystems. Given that phenology is expected to shift under future climate, our findings provide key information for understanding and predicting how phenology may impact 21st‐century hydroclimate regimes and the surface‐energy balance. 
    more » « less